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1 Symmetric Functions and Young Diagrams

1.1 Symmetric functions

We want to systematically write out the character table for Sn, and the classical way, going
back to Frobenius, is to introduce algebras of symmetric functions.

Definition 1.1. The symmetric functions are Λ(x1, . . . , xn) = Z[x1, . . . , xn]Sn . That is,
they are polynomials in n variables with integer coefficients that are invariant under per-
mutations of the variables x1, . . . , xn. We also define ΛR(x1, . . . , xn) = R[x1, . . . , xn]Sn .

There is a natural basis for these. Let λ = (λ1, · · ·λ`) be an integer partition with
λ1 ≥ λ2 ≥ · · · ≥ λ` > 0. Take

mλ =
∑
σ∈Sn

xλ1σ(1)x
λ2
σ(2) · · ·x

λ`
σ(`).

These mλ functions form our basis.

Example 1.1. Some examples of the symmetric functions in this basis are

m(k) = xk1 + xk2 + · · ·+ xkn

m(1, 1, . . . , 1)︸ ︷︷ ︸
k

=
∑
I⊆[n]
|I|=k

∏
i∈I

xi.

Why are the mλ a basis? They are linearly independent because no two distinct mλ

share any terms (look at the exponents of the xi). And for the symmetric functions of degree
at most N , there are enough enough linearly independent mλ with |λ| = λ1 + · · ·λn = N ;
in fact, {mλ : |λ| = N} spans each Λ[x1, . . . , xn](N). and so the mλ span the whole space.

We can define the symmetric functions for infinitely many variables, too. Let

ΛR = ΛR(x1, x2, . . . ),

where each symmetric function will have infinitely many terms.
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1.2 Young diagrams

Definition 1.2. Given a partition λ, the young diagram of λ is the partition expressed as
stacked rows of boxes.

Example 1.2. Take λ = (4, 3, 3, 2, 1). The Young diagram of λ is

Definition 1.3. Let λ be a partition. The transpose of λ, λ∗, is the partition λ∗i =
|{j : λj ≥ i}|.

Much more intuitively, the Young diagram of λ∗ is the transpose of the Young diagram
of λ.

Example 1.3. Take λ = (4, 3, 3, 2, 1), as before. Then the Young diagram of λ∗ is:

So we can see that λ∗ = (5, 4, 3, 1).

Call |λ| =
∑
λi = number of boxes. We can form a partial ordering on {λ : |λ| = n}

by λ ≤ µ iff λ1 + · · ·+ λk ≤ µ1 + · · ·+ µk for all k.

Example 1.4. Take the partitions of 6 (4, 2), (3, 2, 1), and (3, 1, 1, 1). Then (4, 2) ≤
(3, 2, 1) ≤ (3, 1, 1, 1). But we also have that (4, 1, 1) is not comparable to (3, 3). The
partial order on partitions of 6 can be summarized in the following diagram:
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1.3 Elementary symmetric functions

Definition 1.4. Let λ = (λ1, λ2, . . . , λ`) be a partition. The elementary symmetric func-
tion eλ is defined by

eλ = eλ1eλ2 · · · eλ` ,where ek = m(1, 1, . . . , 1)︸ ︷︷ ︸
k

.
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Proposition 1.1. Let λ, µ be partitions of n. Then eλ =
∑

µ aλ,µmµ, where

1. aλ,µ = number of 0-1 matrices with row-sums λ1, λ2, . . . and column sums µ1, µ2, . . .

2. aλ,λ∗ = 1

3. aλ,µ = 0 if µ 6≤ λ∗.

Example 1.5. For partitions of n = 3, we have

e(3) = m(1,1,1),

e(2,1) = m(2,1) + 3m(1,1,1),

e(1,1,1) = m(3) + 3m(2,1) + 6m(1,1,1).

Proof. (1) Since symmetric functions must be invariant under permuting the variables, to
find the coefficient aλ,µ, we need only find the coefficient in front of a single monomial
in each mµ; we pick the monomial xµ11 x

µ2
2 · · ·x

µ`
` . Each monomial in each eλi will be a

product of λi different variables, each with exponent 1; then we can find the coefficient of
a monomial in eλ by finding the number of ways to trace back where its xi terms could
have come from in the product of the eλi .

Now consider the following matrix (represented as a table):

µ1 µ2 µ3 · · ·
λ1 1 0 1 · · ·
λ2 0 1 0 · · ·
λ3 1 0 0 · · ·
...

...
...

...
. . .

We fill in this matrix as follows: Think of the column j as picking an xj from some of
eλ1 , eλ2 , . . . , eλ` (this is “where the xj term came from” when you multiply the eλi), and
place a 1 in the space i, j if an xj term comes from hλi and a 0 otherwise. The product of
all the xj terms in a column should give x

µj
j (since this is the monomial in eλ that we are

looking at), so this is a matrix with column-sums µj . Similarly, each monomial in eλi has
λi variables, so the 1s in row i should add to be λi. We have produced a bijection between
these matrices and the number of ways to get xµ11 x

µ2
2 · · ·x

µ`
` from the product of the eλi ,

so the first part is proved.
(2) To prove the second assertion, construct the matrix above, where the 1s are placed

in the pattern of the upside-down Young diagram of λ. For example, for λ = (3, 2, 1, 1),
construct the matrix

λ∗1 λ∗2 λ∗3
λ1 1 1 1
λ2 1 1 0
λ3 1 0 0
λ4 1 0 0
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This matrix has row sums λi and column-sums λ∗j ; the latter fact follows from the fact that
the Young diagram of the transpose of a partition is the transpose of its Young diagram,
and the column-sums of the matrix are the row-sums of its transpose.

The existence of the aforementioned matrix shows that aλ,λ∗ ≥ 1. However, this is the
only such matrix possible. Assume that λ and λ∗ have been written in decreasing order (as
we have been doing). The first column of the matrix must have λ∗1 1s, which is the number
of λi; then the entire first column must be filled with 1s. Then the second columns must
have λ∗2 1s, which is the number of λi that are greater than 1; then these all must be filled
with 1s. Then at each step, we have that column j must be filled from the top downwards,
filling exactly the rows i such that λi ≥ j. This produces the matrix described above, so
aλ,λ∗ = 1.

(3) We use a “rolling ball” argument. Suppose µ is a partition with aλ,µ > 0; we show
that µ ≤ λ∗. Since aλ,µ > 0, there exists some 1-0 matrix with row-sums λi and column-
sums µi; construct this matrix. For example, if λ = (3, 2, 1, 1) as before, and µ = (3, 2, 1, 1),
then we can construct the matrix

µ1 µ2 µ3 µ4
λ1 1 1 1 0
λ2 1 0 0 1
λ3 0 1 0 0
λ4 1 0 0 0

What does µ ≤ λ∗ mean in this context? It means that for each k, the sum of the first k
columns of the λ, λ∗ matrix is greater than sum of the 1st k columns of the λ, µ matrix.
Imagine the 1s as balls on shelves (the rows). Tilting the matrix counterclockwise to make
the balls roll to the left will only make the sum of the first k columns larger (for each k).
But doing so gives us the λ, λ∗ matrix. So µ ≤ λ∗, and we are done.

Corollary 1.1. The eλ form a basis for the symmetric functions.

Proof. The previous proposition gives us that

eλ = mλ∗ +
∑
µ<λ∗

aλ,µmµ.

Solving for mλ∗ gives us that

mλ∗ = eλ +
∑
µ<λ∗

−aλ,µmµ∗ .

There is a unique minimal element with respect to the partial order on partitions of n,
λ = (1, 1, . . . , 1). Then, given that we can express mµ in terms of elementary symmetric
functions for µ ≤ λ, we can express mλ in terms of elementary symmetric functions. So all
the mλ can be expressed in terms of elementary symmetric functions, and we are done.
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